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We performed theoretical and computational studies to determine the effect of an applied mechanical strain
on the dynamic behavior of heterogeneous polymer gels undergoing the oscillatory Belousov-Zhabotinsky
�BZ� reaction. In these spatially heterogeneous gels, the catalyst for the reaction is localized in specific patches
within the polymer network and the BZ reaction only occurs within these catalyst-containing patches, which
we refer to as BZ patches. We focused on a model for a one-dimensional system, and further assumed that the
BZ reaction did not affect the degree of swelling within the gel. For gels having one and two BZ patches, we
found that a tensile or compressive strain could induce transitions between the oscillatory and nonoscillatory,
steady-state regimes of the system. For certain values of the BZ stoichiometric parameter f , these transitions
could exhibit a hysteresis. In systems having two oscillating BZ patches, an applied strain could cause a
switching between the in-phase and out-of-phase synchronization of the oscillations. The ability to controllably
alter the dynamic behavior of BZ gels through mechanical deformations opens up the possibility of using these
materials in the design of chemo-mechanical sensors.
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I. INTRODUCTION

Mechanochemistry involves the activation of chemical re-
activity by an external mechanical deformation or force. The
field of mechanochemistry is arguably less developed than
thermo-, photo- or electro-chemistry �1�. In particular, the
control of chemical reactivity through an applied mechanical
strain remains a relatively unexplored and potentially rich
area of science. Understanding how mechanical strain pro-
duces chemical changes in materials could, for example,
present opportunities for creating stimuli-responsive sys-
tems.

Using theory and simulation, we recently have begun to
probe the effects of mechanical deformation on a particular
class of responsive materials, namely, polymer gels undergo-
ing the Belousov-Zhabotinsky �BZ� reaction �2�. BZ gels are
unique because the polymer network can expand and con-
tract periodically in the absence of applied external stimuli
�3,4�. This autonomous, self-oscillatory swelling behavior is
due to a ruthenium catalyst, which participates in the BZ
reaction and is covalently bonded to the polymers �3,4�. The
BZ reaction generates a periodic oxidation and reduction in
the anchored metal ion, and these chemical oscillations in-
duce the rhythmic swelling and deswelling in the gel.

While the BZ gels can pulsate without external controls,
we have found that mechanical pressure can be harnessed to
manipulate the oscillatory behavior of these gels �2�. In order
to probe these effects, we developed computational models
to simulate the behavior of BZ gels in two dimensions �5,6�
and more recently, in three dimensions �3D� �7�. �The two-
dimensional �2D� model effectively captures the behavior of
gels that are confined between two surfaces, i.e., the gels are
allowed to oscillate in the lateral directions, but the height of

the sample is kept fixed.� Using these models, we isolated
systems where the applied pressure induced chemical oscil-
lations in an initially nonoscillatory system �2�. With the aid
of the 2D model, we also pinpointed a scenario where a
compression induces both oscillations and the autonomous
rotation of the entire BZ gel sample �2�.

In the above studies, the BZ gels were assumed to be
homogeneous, i.e., the catalyst was uniformly distributed
throughout the sample. In addition to such homogeneous BZ
gels, we have modeled the behavior of heterogeneous or
chemically patterned gels, where the catalyst was confined to
distinct patches within the polymer network �8�. In such sys-
tems, the chemical oscillations only occur within these BZ
patches. Our studies showed that the oscillations in neighbor-
ing patches can become synchronized, with these regions
pulsating in phase or out of phase with respect to each other
�8�.

These heterogeneous systems are of interest because the
patterning of the gel provides a route for designing systems
with well-defined dynamical behavior. For example, our 2D
simulations of heterogeneous gels revealed that the lateral
separation, �x, between two BZ patches controls the syn-
chronization dynamics of these patches. By varying �x, we
produced a switching between the in-phase and out-of-phase
modes of synchronization in heterogeneous gels containing a
linear array of BZ patches �8�.

The lateral separation between patches in a sample of the
heterogeneous BZ gel would be fixed during the fabrication
of the gel. After fabrication, however, the distance could be
changed by applied mechanical deformation of the gel or by
induced swelling/shrinkage of the polymer network. The re-
sulting mechanical strain could potentially drive a system
into the oscillatory state or alter the synchronization between
multiple oscillating patches. If this form of mechanochemis-
try was shown to occur, the heterogeneous BZ gels could be
utilized as a functional material that alters its functionality in
a response to an external mechanical action.*balazs@pitt.edu
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In this paper, we use theory and simulation to investigate
the effects of deforming self-oscillating polymer gels that
contain spatially heterogeneous distributions of BZ catalyst.
To facilitate the theoretical analysis, we consider a one-
dimensional �1D� model of the heterogeneous BZ gel. This
1D model describes gels that are confined within a narrow
tube, or capillary, and is an approximate description of ten-
sile or compressive strain in 2D gels comprising arrays of
high-aspect-ratio BZ patches.

In the 1D model, the mechanical strain is introduced by
increasing �or decreasing� the length of the sample, effec-
tively simulating an applied tensile �or compressive� strain
on the gel. A further simplification is achieved by assuming
that the ongoing BZ reaction does not affect the degree of
swelling within the gel. In other words, we assume that the
chemical oscillations in the reaction do not produce me-
chanical oscillations of the gel; we refer to these materials as
nonresponsive gels. In fact, such nonresponsive gels have
been fabricated �9,10�. On the other hand, deformations of
the gel affect the BZ reaction through variations in the vol-
ume fraction of polymer within the sample.

We start by considering a system that contains a single BZ
patch and isolate the conditions that drive the system into the
oscillatory regime of the BZ reaction. The results of this
study allow us to pinpoint the model parameters for which
the oscillations can be switched “on” and “off” by changing
the length of the system, e.g., by inducing a mechanical
strain. Then, we consider a polymer gel that has two catalyst-
containing patches. We focus on the existence, coexistence,
and stability of the in-phase and out-of-phase oscillations in
a 1D system subject to mechanical strain and determine how
the system parameters affect the dynamical behavior.

II. METHODOLOGY

Our system consists of a swollen polymer gel; within this
gel, the polymer-tethered BZ catalysts are localized in spe-
cific patches �BZ patches� that are arranged along the X axis.
The material is treated as a purely one-dimensional system;
this assumption is reasonable if the patterned gel is confined
in a thin capillary tube, or a 2D film of gel contains an array
of long, parallel strips of the BZ patches. The cross-link den-
sity and the volume fraction of polymer are assumed to be
spatially uniform throughout the whole sample. In the non-
deformed state, the gel sample in characterized by the poly-
mer volume fraction �0 and the initial length L0. After this
sample is placed in a capillary tube �oriented along the X
axis�, it becomes swollen so that its degree of swelling in the
longitudinal direction is � and the degree of swelling in the
transverse direction is ��. The polymer volume fraction �
and the gel length L in the swollen state are

� = �0�−1��
−2 �1�

and L=�L0, respectively.
We assume that the BZ gel is nonresponsive, i.e., the BZ

reaction does not affect the polymer-solvent interactions. The
behavior of this system is governed by reaction-diffusion
equations that describe the BZ reaction both inside and out-
side the catalyst-containing patches. To capture this behavior,

we utilize the Oregonator model �11�, which describes the
BZ reaction in terms of the concentrations of the diffusing
reactant, u and the oxidized catalyst, v. Within a patch, the
equations in the dimensionless form are

�tu = �xxu + F�u,v,�� , �2�

�tv = �G�u,v,�� . �3�

The original Oregonator model, however, was formulated for
the BZ reaction in solution �i.e., not in a gel� and the reaction
rate functions F and G just depended on the concentrations u
and v �11�. We recently modified this model to account for
the presence of the polymer network under the assumption
that the polymer acts like a neutral diluent �6,12�. Now, both
F and G also depend on the volume fraction of polymer, �.
Thus, for the BZ gels, we utilize the following equations
�6,12�:

F�u,v,�� = �1 − ��2u − u2 − �1 − ��fv
u − q�1 − ��2

u + q�1 − ��2 , �4�

G�u,v,�� = �1 − ��2u − �1 − ��v . �5�

The stoichiometric parameter f and the dimensionless pa-
rameters � and q have the same meaning as in the original
Oregonator �11�. The parameter � in Eq. �3� is a ratio of two
reaction rates; one reaction rate is for the reduction of the
metal-ion catalyst during the oxidation of the organic sub-
strate and the other is for the oxidation of the catalyst medi-
ated by the BZ reactant u �11�. Hence, � depends on both the
composition of the reaction substrate and temperature. The
parameter q in Eq. �5� is a combination of reaction rate con-
stants and thus, depends only on temperature �11�.

Since the reactant u is a product of the reaction, u simply
diffuses and decays outside of the patches; thus, within these
catalyst-free regions, the evolution of u is given by �13�

�tu = �xxu − u2. �6�

The concentration u and its spatial derivative �xu are con-
tinuous at the boundaries between the catalyst-containing
and catalyst-free regions of the gel.

As is evident from Eqs. �2�–�5�, the local volume fraction
of polymer � affects the kinetics of the BZ reaction. In gen-
eral, Eqs. �2� and �3� must be supplemented by an equation
that describes the spatiotemporal evolution of �. The theo-
retical analysis can be significantly simplified if the polymer
gel is assumed to be in its swollen equilibrium state at the
given boundary conditions. In this case, �=const since we
are considering a nonresponsive gel with a spatially uniform
cross-link density. Then, the � dependence can be effectively
eliminated from Eqs. �4� and �5� through the following res-
caling: u�1−��−2→u, v�1−��−3→v, and t�1−��2→ t �6�.
If, in addition, we change the length scale as �−1x→x, then
the reaction-diffusion equations within the patches, Eqs. �2�
and �3�, take the following form:

�tu = D��xxu + F�u,v� , �7�
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�tv = ��G�u,v� . �8�

Here

D� = �−2�1 − ��−2, �� = ��1 − ��−1 �9�

and the rate functions F and G are given by the original
Oregonator equations of Tyson and Fife �11�:

F�u,v� = u�1 − u� − fv
u − q

u + q
, �10�

G�u,v� = u − v . �11�

The evolution of u in the catalyst-free regions �Eq. �6�� takes
the following form after the rescaling:

�tu = D��xxu − u2. �12�

Thus, after the rescaling, the problem is solved on the spatial
interval of length L0; the values of the polymer volume frac-
tion � and longitudinal degree of swelling � affect the sys-
tem behavior only through the effective diffusion coefficient
D� and parameter �� given by Eq. �9�. It is worth recalling
that the polymer volume fraction � itself depends on �
through Eq. �1�.

Note that � is the longitudinal degree of stretching, which
can be changed either by applying mechanical force to the
ends of the gel or altering the external conditions that affect
the swelling of the gel. In this paper, we do not specify the
particular action that changes �. We focus on how the longi-
tudinal stretching � affects the dynamics of the heteroge-
neous gel provided that the gel size in the transverse direc-
tion remains unchanged ���=const�. To achieve this goal,
we first obtain the steady-state solution of the model, and
then perform a linear stability analysis of this solution. As
both the steady state and its stability to small perturbations
are affected by the value of �, we find as a result how the
regions of the oscillatory solutions and the in- and out-of-
phase synchronization modes depend on the longitudinal
stretching.

A. Steady-state solutions

In the heterogeneous gel, the steady-state distributions of
the concentrations u and v within the patches are described
by the equations

D�u� + F�u,v� = 0, G�u,v� = 0, �13�

where the rate functions F and G are given by Eqs. �10� and
�11�, respectively. For simplicity, in the ensuing discussion,
we will refer to the catalyst-free gel as the “neutral” gel. In
the neutral gel between the patches, the concentration u
obeys the equation

D�u� − u2 = 0. �14�

We use the notation u�=du /dx. As stated above, the function
u�x� and its first derivative are continuous at the boundaries
between the BZ and neutral gels. We note that v�x�=u�x� in
the steady state due to the particular form of the function
G�u ,v�, Eq. �11�. The steady-state equation for u can be
written as

D�u� = −
dUr

du
, �15�

where the subscript r= p ,g denotes the regions within the
catalyst-containing BZ patches �“p”� and the neutral gel
�“g”�. It is worth noting that Eq. �15� is mathematically
equivalent to the equation of motion of a material point of
mass D� in the potential field Ur�u�. The potential is different
in the patch and gel areas:

Up�u� = 1/2u2�1 − f − 2/3u� + 2fq�u − q ln�u + q�� ,

�16�

Ug�u� = − 1/3u3. �17�

We enumerate alternating sequence of the catalyst-
containing and neutral gel intervals along the sample by a set
of successive integer numbers n, so that the even and odd
numbers correspond to the BZ patches and neutral gel areas,
respectively. The nth area of the heterogeneous gel occupies
the interval x� �xn ,xn+1� on the X axis, and has a length Ln
=xn+1−xn. Correspondingly, the steady-state solution within
the interval n is denoted as un�x�, and the following notation
for the potential functions is used:

Un�u� = �Up�u� , even n

Ug�u� , odd n .
� �18�

Equation �15� can be integrated within each interval to obtain
an analog of the energy conservation law:

D��u��2

2
+ Un�u� = En, �19�

where En is the integration constant �energy� corresponding
to the interval n. Thus, the problem of finding the steady-
state solutions is reduced to solving a system of first-order
ODE’s, Eq. �19�. Equation �19� gives the following implicit
solution for the function un�x�:

��2D��−1/2� �En − Un�u��−1/2du = x + Cn. �20�

Here, Cn is the integration constant. The sign on the left-hand
side of Eq. �20� coincides with the sign of the derivative
u��x�. To determine the integration constants En and Cn, the
boundary conditions must be fixed at the left and right ends
of the gel, and the interval solutions un�x� should be matched
at the boundaries between the intervals:

un−1�xn� = un�xn�, un−1� �xn� = un��xn� . �21�

We will also use the notation un=un�xn� and

Qr�ua,ub,E� = �2D��−1/2�
ua

ub

�E − Ur�u��−1/2du, r = p,g .

�22�

Equations �18� and �19� describe all possible steady-state
solutions within the catalyst-containing and neutral gel areas.
It is instructive to represent the solutions graphically in terms
of phase portraits, i.e., by plotting the “velocity” u� as a
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function of the “coordinate” u at various values of the “en-
ergy” E. Figures 1�a� and 1�b� show the phase portraits of
Eqs. �18� and �19� for the BZ patch and neutral gel, respec-
tively. As seen in Fig. 1, the structure of a steady-state solu-
tion qualitatively depends on the value of E. In Fig. 1�a�,
there is the separatrix curve indicated by the dotted line,
which corresponds to E=Up�u��, where u� is the steady-state
concentration of u in the homogeneous system obtained from
Eq. �13� at u�=0:

u� =
1

2
�1 − f − q + ��1 − f − q�2 + 4q + 8fq� . �23�

In Fig. 1�b�, the separatrix corresponds to E=0.
The steady-state distribution of the diffusing reactant u in

a heterogeneous gel can be obtained by a proper combination

of the trajectories shown in Figs. 1�a� and 1�b�. Let us con-
sider the symmetric heterogeneous gels having one and two
patches as shown in Fig. 2. We assume that u=0 at the ends
of the sample. Then, the steady-state solutions can be found
as schematically shown in Fig. 1�c�. In this figure, the solid
line indicates the steady-state solution within the BZ patches,
and the dashed lines correspond to those in the neutral gel
areas. The trajectory ABEF gives the solution in the symmet-
ric heterogeneous gel having one patch. In the case of two
patches, the solution is given by the trajectory ABDCEF.

Let us now find the steady-state solutions in the explicit
form. As indicated in Fig. 2, the length of the catalyst-
containing patches is Lp, and the distance from the patches to
the sample ends is Lg. The lateral separation between
patches, or interpatch distance, is �x �see Fig. 2�b��. We seek
the spatially symmetric solution, so it is sufficient to consider
only one half of the gel sample, i.e., the areas x0�x�x2 in
Fig. 1�a� and x1�x�x4 in Fig. 2�b�. We note that the num-
bering of the interval boundaries in Fig. 2 corresponds to the
adopted notation for the catalyst-containing and neutral gel
areas.

In the gel having one patch �see Fig. 1�, the distribution of
u exhibits a maximum at the center of the BZ patch �see Fig.
1�c��, so that u0��x0�=0 and u0�u1. It also follows from Eqs.
�18� and �19� that E0=Up�u0� at u0��x0�=0. As a result, Eq.
�20� applied to the BZ patch takes the following form:

Qp�u1,u0,Up�u0�� = 1/2Lp. �24�

Within the neutral gel interval, u2=0 due to the chosen
boundary conditions, so that E1	0 and

Qg�0,u1,E1� = Lg. �25�

The interval solutions are matched at the boundary between
them through Eqs. �19� and �21� giving

Up�u0� − Up�u1� = E1 − Ug�u1� . �26�

Equations �24�–�26� are solved numerically to obtain the un-
known values of u0, u1, and E1. Finally, the steady-state dis-
tribution of u is found explicitly by solving Eq. �19� via
numerical methods. It is worth noting that if the BZ patch is
placed within an infinite system, i.e., if Lg→
, then E1=0
and the distribution of u within the neutral gel can be found
analytically to be

u1
−1/2�x� = u1

−1/2 + �6D��−1/2�x − x1/2� . �27�

In this limiting case, the values of u0 and u1 are found by
solving Eqs. �24� and �26�. We also note that the maximum

(a)

u�

u/u*

E < U*

E > U*

E > U*

E < U*

(b)

u�

u/u*

E < 0

E > 0

E > 0

A
B

F

C

E

D

u/u*

u�

(c)

FIG. 1. Phase portraits of Eq. �19� within �a� BZ patch, �b�
neutral gel, and �c� symmetric heterogeneous gel.
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x2 x3 x4x1
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Lp Lg
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FIG. 2. Coordinate notations for the symmetric gel containing
�a� one patch and �b� two patches. The BZ patches are marked in
black.
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value of u within a BZ patch of finite length Lp is always
smaller than the steady-state value in the infinite system; u0
approaches u� as Lp→
. It can be shown that the integral on
the left-hand side of Eq. �24� is a monotonously increasing
function of u0 that diverges as u0 approaches u� from below.

The steady-state solution for the gel having two BZ
patches can be found by taking the same steps as described
above. The profile of u goes through a minimum in the
middle of the neutral gel area separating the two patches �see
Fig. 1�c��, so that u2�u1, and E1=Ug�u1�. Therefore, Eq.
�20� for this interval can be written as

Qg�u1,u2,Ug�u1�� = 1/2�x . �28�

Within the catalyst-containing patch, the concentration u ex-
hibits a maximum with the value umax. Then, E2=Up�umax�
and

Qp�u2,umax,Up�umax�� + Qp�u3,umax,Up�umax�� = Lp.

�29�

For the neutral gel area at the end of the sample, Eq. �20�
takes the form of Eq. �25�, namely,

Qg�0,u3,E3� = Lg. �30�

Finally, the matching conditions, Eq. �21�, at the points x2
and x3 provide the following respective equations:

Ug�u1� − Ug�u2� = Up�umax� − Up�u2� , �31�

Up�umax� − Up�u3� = E3 − Ug�u3� . �32�

Equations �28�–�32� are solved simultaneously to determine
the unknown values u1, u2, u3, umax, and E3, which are then
used to solve Eq. �19� within the corresponding intervals to
obtain the steady-state solution u�x�.

Thus, we demonstrated that the problem of finding the
steady-state solutions is essentially reduced to solving the
system of equations �Eqs. �24�–�26� and Eqs. �28�–�32�� for
the symmetric heterogeneous gels having one and two
catalyst-containing patches, respectively. Solving these equa-
tions numerically is complicated by the presence of the inte-
gral terms in the left-hand sides of Eq. �24� and Eqs.
�28�–�30�. We note that the major difficulty is due to the
integrals over the BZ patches, Qp, in Eqs. �24� and �29�. The
integrals over the neutral gel intervals, Qg, in Eqs. �25�, �28�,
and �30� do not cause major challenges because they can be
expressed through hypergeometric functions. A significant
simplification can be achieved if the catalyst-containing
patches are sufficiently short that the concentration of u does
not approach the value of u� �Eq. �23��, which is character-
istic for the homogeneous system. In this case, u�x� within
the BZ patches can be obtained analytically using a linear-
ization procedure to solve Eq. �13�. Within this approxima-
tion, Eqs. �24� and �29� are excluded from the systems of
equations.

Figure 3 shows the comparison between the steady-state
distributions u�x� obtained through the numerical solutions
and analytically using the above simplified procedure. It is
seen that the results of numerical and analytical calculations
are in agreement for the gels having one �Fig. 3�a�� and two

�Fig. 3�b�� catalyst-containing patches. The dashed lines in
Figs. 3�a� and 3�b� represent the steady-state solutions ob-
tained at Lg→
, i.e., in the infinite 1D system. It is seen that
the steady-state profiles of u within the patches in the finite
gels at Lg=10 are very close to those in the infinite system.

B. Stability of the steady states

We study the linear stability of the obtained steady-state
solutions in order to reveal the effect of the longitudinal
stretching � on the existence of the oscillatory regimes in the
heterogeneous BZ gels. For this purpose, Eqs. �6�–�8� are
linearized around the spatially nonuniform steady-state dis-
tributions u�x� and v�x�, and the associated eigenvalue prob-
lem is solved. Within the BZ patches, the corresponding
equations are

D�ũ� + Fu�u�ũ + Fv�u�ṽ = �ũ , �33�

���ũ − ṽ� = �ṽ , �34�

where Fu�u�= �� /�u�F�u ,v�, Fv�u�= �� /�v�F�u ,v�, and v=u.
Outside the catalyst-containing patches, the equation is

D�ũ� − 2uũ = �ũ . �35�

The eigenproblem in Eqs. �33�–�35� is solved under the con-
dition that ũ=0 at the ends of the sample. The eigenvalue
�=���� depends on the longitudinal degree of stretching �
through the model parameter �� and the diffusion coefficient
D� in Eqs. �33�–�35�. The eigenvalues with Im ��0 corre-
spond to the oscillatory solutions, which decay or grow in
time if Re ��0 or Re ��0, respectively. In the latter case,

f = 0.7Lg = 10
�uxu /)(

x

Lp = 5

� = 1

��= 1.1(a)

�uxu /)(

x

�x = 5

(b)

FIG. 3. The steady state in the systems with �a� one and �b� two
BZ patches as obtained by the numerical simulations �symbols� and
analytically using the linear approximation within the patches �solid
lines�. The dashed lines represent the steady states at Lg→
.
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the steady-state solution is unstable, meaning that any per-
turbation develops into the nonlinear oscillations. We are in-
terested in the situations where variations in the stretch �
lead to changes in the sign of Re � at Im ��0 �the Hopf
bifurcation�, i.e., when the dynamics of the system exhibits a
qualitative change caused by the mechanical deformation.

C. Numerical simulations

The reaction-diffusion equations, Eqs. �2�–�6�, were
solved numerically using the gel lattice-spring model
�gLSM� developed previously by two of us for simulating
the dynamics of chemo-responsive BZ gels in two dimen-
sions �6�. This approach utilizes the DVODE routine for
solving systems of stiff ordinary differential equations �14�.
To solve Eqs. �2�–�6�, we applied the 2D gLSM to a station-
ary lattice that is only two nodes in height, and prohibited the
diffusion of the reactant u across the boundaries in the latter
direction. With these restrictions, the gLSM becomes an ef-
ficient solver for Eqs. �2�–�6�, where the spatial derivatives
in Eqs. �2� and �6� are approximated by finite differences.
The equations for calculating the steady state, Eqs.
�28�–�32�, and the equations for determining the stability of
these steady states, Eqs. �33�–�35�, were solved using the
MATHEMATICA™ software.

For the BZ reaction parameters �see Eqs. �8�–�10��, we set
�=0.354, q=9.5210−5 as in our previous studies �6�. The
polymer gel was characterized by �0=0.139 and ��=1.1.
These parameter values were based, where possible, on
available experimental data �6�. The parameters f and � were
used as variables. The parameter f was varied in the range
0.6� f �1. The units of time and length used in our simula-
tions correspond to T0	1 sec and L0	40 �m, respectively
�6�.The length of the catalyst containing patch Lp was taken
equal to 3 and 5L0. The interpatch spacing �x was varied
from 0.5 to 10L0. The length of the neutral gel area between
the patches and the gels ends Lg was set to 10L0. Corre-
spondingly, the total respective lengths of the nondeformed
system were equal Lp+2Lg and 2�Lp+Lg�+�x in the gels
having one and two BZ patches. �When solving the initial
equations, Eqs. �2�–�6�, in the stretched state, �x, Lp and Lg
are multiplied by the stretch ratio �.� The spatial discretiza-
tion used in the simulations was 1 /20L0. Below, all lengths
are measured in the units of L0, so it is omitted from the
equations for simplicity. For the boundary conditions, we set
the concentration of the activator to u=0 at the ends of the
sample.

III. RESULTS AND DISCUSSION

A. Single BZ patch within heterogeneous gel

The behavior of a heterogeneous gel having one catalyst-
containing patch was found to depend upon the length of the
patch Lp. Figure 4�a� shows the steady-state distribution of u
in samples with Lp equal to 3 and 5 in the case where there
is no longitudinal stretching, i.e., �=1. It is seen in Fig. 4�a�
that the concentration u in both systems is lower than that in
the homogeneous gel, u�, and that the steady-state values of
u are notably lower in the system with the shorter patch.

The results of the linear stability analysis �see Eqs.
�33�–�35�� of these steady states with variations in the degree
of stretching � for various values of the stoichiometric pa-
rameter f are presented in Fig. 4�b�. This figure shows the
position of the Hopf bifurcation points on the �− f plane,
with the domain of the oscillatory regime of a system being
located above the corresponding curve. To obtain the eigen-
values at Lp=3 and 5, the spatial derivatives in Eqs. �33� and
�35� were approximated by the finite differences, with the
spatial discretization of 1 /20. The resulting matrix eigen-
problem was solved numerically using the MATHEMATICA™
software. Recall that due to the applied rescaling, the stretch-
ing � enters Eqs. �33�–�35� only through D� and ��, so the
eigenproblem is solved on the nonstretched intervals of Lp
and Lg. It is worth noting that fine spatial discretization is
essential for finding the correct location of the bifurcation
points at small values of f , i.e., in proximity to the left
boundary of the oscillatory domain in Fig. 4�b�. For ex-
ample, at Lp=5, the discretization of 1 /4 yields the bifurca-
tion value of � at f =0.7 with the relative deviation of about
14%, whereas at f =0.9 the relative deviation is about 3%.

To verify the results of the linear stability analysis, we
conducted the numerical simulations of the 1D model at Lp
=5, and the obtained data are shown in Fig. 4�b� by the solid
square symbols. The latter data points were obtained by start-
ing the simulations at sufficiently low values of �, at which
the system exhibits no oscillations. Then, the longitudinal
strain � was gradually increased until the steady state ceased
to exist. Specifically, the strain was increased in steps of
��=0.01; between two successive changes of �, the simula-

�uxu /)(

x

Lp

3
5

� = 1 f = 0.7

��= 1.1

Lg = 10

(a)

(b)

No oscillations

Oscillations

�

f

c0 Lp
3
5

�

0.5c0

2c0

FIG. 4. �a� Steady-state distribution of u, and �b� the location of
the Hopf bifurcation points as obtained by the linear stability analy-
sis of the steady state in the gel having one patch of length Lp=3
�dashed line�, 5 �solid line�, and 
 �dotted line�. In �b�, the symbols
are the data points obtained by the numerical simulations at Lp=5.
Horizontal thin dashed lines in �b� show the equilibrium degree of
longitudinal swelling at 20 °C and the values of cross-link density
of 0.5c0, c0, and 2c0.
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tions were run for 1000 units of time. It is seen that the
results of these simulations and the theoretical calculations
are in an excellent agreement. Figure 4�b� also shows the
linear stability of a homogeneous BZ gel described by the
following equation:

1 − 2u��1 + fq�u� + q�−2� = ��1 − �0�−1��
−2�−1, �36�

where u� is given by Eq. �23�. Equation �36� is obtained by
solving the eigenproblem in Eqs. �33� and �34� for spatially
uniform concentrations �ũ�=0 in Eqs. �33��, and requiring
that Re �=0.

It is evident from Fig. 4�b� that changing the lateral
stretching � at a given stoichiometric parameter f can result
in a switching between the oscillatory and nonoscillatory re-
gimes of the BZ reaction. The lateral size at which the
switching between the reaction regimes occurs depends on
the value of f , and on the length Lp of the BZ catalyst-
containing region. It is also seen in Fig. 4�b� that the domain
of the oscillatory regime decreases with decreasing patch
length Lp. In other words, gel samples having short BZ
patches must be stretched to greater tensile strains in order to
induce the BZ oscillations.

It is worth noting that the initial unstretched length of
swollen polymer gels depends on the cross-link density, c0.
At a given temperature, the degree of swelling decreases
with an increase in the cross-link density. The latter fact is
demonstrated in Fig. 4�b� by the thin, dashed horizontal
lines, which show the equilibrium swelling in the gel at three
values of the cross-link densities. These degrees of swelling
were obtained as described in Refs. �6,12�, and correspond to
a temperature of about 20 °C. It is evident from Fig. 4�b�
that in the absence of an applied force and a given value of f ,
whether or not the heterogeneous gels exhibit chemical os-
cillations depends on the length of patch Lp and the cross-
link density in the gel. From Fig. 4�b�, we can deduce that a
densely cross-linked gel might require application of a larger
external force than a loosely cross-linked sample to reach the
oscillatory domain. Thus, the induction of oscillations via
small changes in applied strain or swelling are predicted to
be achieved most readily for lightly cross-linked gels com-
prising large BZ patch lengths.

It was noted above that the numerical simulations confirm
the results of the linear stability analysis. Further simulations
revealed the existence of hysteresis; namely, for a certain
range of the stoichiometric parameter f , the transition be-
tween the oscillatory and nonoscillatory regimes of the BZ
reaction occurs at different values of � depending on whether
the transition is approached from within the oscillatory or
steady-state domains. Figure 5 shows the presence of an area
in which the oscillatory and nonoscillatory regimes coexist
in the heterogeneous gels at Lp=3 and 5, and in the homo-
geneous 1D gel �Lp=
�. In this figure, the solid lines are
obtained through the linear stability analysis as described
above, and the data points shown by the symbols were ob-
tained through the numerical simulations in which the strain
� was decreased starting from the oscillatory regime. The
data points were obtained by varying � in steps of ��
=0.01, and are connected by the dashed line to guide the eye.
The two regimes coexist in the area between the solid and

the dashed lines. If the system is initially in the nonoscilla-
tory regime and the dashed line is crossed from below, the
system remains in the steady state until the solid line is
reached. Correspondingly, if the system is initially in the
oscillatory regime and the solid line is approached and
crossed from above, then the oscillations continue to exist
until the dashed line is crossed, and then the oscillations
stop. These simulations also revealed that the area of coex-
istence depends on the value of the parameter f . As seen in
Fig. 5, the coexistence area in the both heterogeneous and
homogeneous 1D gels disappears as the stoichiometric pa-
rameter f is increased.

The observed hysteretic effect takes place because the Or-
egonator exhibits the subcritical Hopf bifurcation at the val-
ues of the stoichiometric parameter of f �1 �15�. As shown
in Ref. �15�, there is a finite interval of f below the bifurca-
tion point where the phase portrait of the Oregonator �see
Eqs. �7� and �8� at u�=0� consists of a stable focus and a
stable large-amplitude limit cycle separated by an unstable
small-amplitude limit cycle. At a given value of �, the bifur-
cation value of f and the length of the above interval depend
on the gel stretching � through the value of ��, Eq. �9�. If f
is below the above interval, only a stable focus exists in the
phase portrait. Above this interval �beyond the bifurcation
point�, the phase trajectories exhibit an unstable focus and a
stable large-amplitude limit cycle, i.e., the large-amplitude
oscillations are established in the system when the steady
state loses its stability �15�. For f within the above interval,
the system can exhibit both the steady-state and large-
amplitude oscillations depending upon the initial conditions.
The latter bistability causes the hysteretic behavior with
variations in f and the gel stretching �. The numerical simu-
lations were essential in detecting the hysteretic effect shown
in Fig. 5 because the linear stability analysis can only locate
the bifurcation point. It is worth noting that the hysteretic
effect is absent at f �1 as the Oregonator exhibits the super-
critical Hopf bifurcation for this region �15� so the oscilla-
tory and steady states do not coexist. We also note that at f
�1, the steady state loses its stability to the small amplitude
oscillations �15�.

Finally, the numerical simulations showed that the fre-
quency of chemical oscillations within the heterogeneous BZ

�

f

Lp
3
5

�

FIG. 5. Coexistence of the oscillatory and nonoscillatory re-
gimes in the heterogeneous gel with one patch of length Lp=3, 5,
and 
. The regimes coexist in the area between the solid and dashed
curves corresponding to the same Lp. Symbols: the data obtained by
the simulations.
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gels depends on the patch length Lp and changes upon defor-
mation of the sample. Figure 6 presents the oscillation fre-
quency, �, as a function of the stretch � for the gel having
one patch of length Lp=3, 5, and 
 at f =0.7. The frequency
is normalized to the value of �0
0.170, which is the fre-
quency of oscillations at Lp=5 and �=1.5. �We note that the
latter value was chosen for convenience; other choices could
also have been used.� In Fig. 6, the open symbols mark the
data obtained at � within the area of coexistence of the os-
cillatory and nonoscillatory regimes, and the solid symbols
correspond to the oscillatory regime. The data points are con-
nected by dotted lines as a guide for the eye.

It is seen in Fig. 6 that in the oscillatory state �solid sym-
bols�, the frequency of oscillations decreases with an in-
crease in the patch length Lp, and stretching the gel causes a
slight increase in the frequency of oscillations on the order of
several percent. The effect of deformations was found to be
stronger in the coexistence area �open symbols in Fig. 6�, to
which oscillations within the gel could be driven by com-
pressive strain. For example, at Lp=5, the oscillation fre-
quency exhibits a drop of about 20% upon a decrease in �
before the oscillations stop �see open squares in Fig. 6�. It is
worth noting that the data for Lp=
 �the homogeneous BZ
gel of infinite size� are presented in Fig. 6 to illustrate the
general trend in the dependence of � on Lp. In practice, the
global chemical oscillations might not exist in sufficiently
large BZ gels, and instead, traveling chemical waves would
be observed �4�. In particular, chemical waves are experi-
mentally observed in spherical, nonresponsive gels BZ that
are larger in diameter than 	500 �m �10�. Since the unit of
length in our simulations is L0	40 �m, traveling chemical
waves are anticipated in the heterogeneous BZ gels at
Lp�10L0.

B. Heterogeneous gel having two BZ patches

The BZ reaction processes within the two catalyst-
containing patches, which are placed next to each other, are
correlated through the concentration field u in the gap be-
tween the patches. If the gap is sufficiently wide, the patches

behave as independent chemical oscillators; in such cases,
the effect of strain on the heterogeneous gel is similar to that
described above. Varying the interpatch distance �x changes
the strength of interaction between the BZ patches. We stud-
ied the effect of the longitudinal stretch � on a heterogeneous
gel having two patches of length Lp=5 at the stoichiometric
parameter of f =0.7. The regions of the oscillatory and
nonoscillatory regimes in this system are mapped on the
�x-� plot shown in Fig. 7. In the plot, the solid curve rep-
resents the position of the Hopf bifurcation point obtained by
the linear stability analysis, and the symbols show the results
obtained via the numerical simulations of the dynamics of
the system. The procedure to obtain the data points was the
same as described in the previous section, i.e., the stretch �
was increased �or decreased� in a stepwise manner until the
steady-state �or oscillatory� regime ceased to exist. The
simulations were run for 2000 units of time at each value of
�. The solid symbols mark the upper boundary of the steady-
state domain, and the open symbols correspond to the lower
boundary of the oscillatory regime’s domain; both bound-
aries were located by varying � in increments of ��=0.01.
As indicated in Fig. 7, the steady-state and oscillatory re-
gimes coexist in the area between the lines formed by the
open and solid symbols. Figure 7 also shows that the results
of the linear stability analysis �solid line� and numerical
simulations �solid symbols� are in a fairly good agreement.

Figure 7 demonstrates that at �x�1, a decrease in the
interpatch distance �which causes the patches to interact
more strongly� enlarges the steady-state domain. This effect
was previously observed in 2D simulations of heteroge-
neous, nonresponsive BZ gels when �x was decreased at
constant � �8�. Figure 7 also reveals that at �x�1, the size
of the steady states domain diminishes. The latter behavior
occurs because at �x→0, the two individual patches form a
single BZ patch of length 2Lp, and longer patches exhibit a
larger oscillatory domain than shorter ones, as shown in the
previous section. Finally, the plot also indicates that for �x
�3, the area of coexistence of the oscillatory and steady-
state regimes increases with a decreasing interpatch distance
�x.

The numerical simulations revealed that in the oscillatory
regime, the chemical oscillations within the two patches pro-
ceed with a constant phase difference equal to either 0 or to

�

���0 Lp
3
5
�

FIG. 6. Frequency of oscillation in the heterogeneous BZ gel
having one patch as a function of gel stretch l at the patch length of
Lp=3, 5, and 
, and f =0.7. The data were obtained by the simula-
tions in the oscillatory regime �solid symbols� and in the area of
coexistence of the oscillatory and nonoscillatory regimes �open
symbols�. �0
0.170 is the oscillation frequency at Lp=5 and �
=1.5.

�x

�

No oscillations

Oscillations

Co-existence

��= 1.1 Lg = 10Lp = 5 f = 0.7

�0= 0.139

FIG. 7. Coexistence of the oscillatory and nonoscillatory re-
gimes in the heterogeneous gel with two patches as obtained by the
numerical simulations �symbols�. The results of the linear stability
analysis of the steady state are shown for comparison by the solid
line. Also shown are the lines of linear stability with respect to the
even �dashed line� and odd �short-dashed line� perturbations.
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� �in-phase or out-of-phase synchronization, respectively�.
The observed mode of synchronization was found to depend
upon the interpatch distance, �x, and the sample length in
the deformed state, �. Furthermore, the simulations showed
that the synchronization modes coexist at some �x and �,
with the mode selection being dependent upon the initial
conditions and the history of deformation.

Figure 8 presents the result of mapping the domains of the
in-phase and out-of-phase modes of oscillation in the �x-�
coordinates. In Fig. 8, the open and solid triangles indicate
the respective in- and out-of-phase oscillatory regimes, and
the stars show the points where both of these synchronization
modes are observed. For convenience, Fig. 8 also shows the
upper and lower stability boundaries of the steady state �see
Fig. 7�. To obtain the map in Fig. 8, we initiated the simula-
tions at the values of � that correspond to the steady ��
=0.5� or the oscillatory ��=2.5� states, and then respectively
increased or decreased � in a stepwise manner, with a step
size of 0.1. For each point in the oscillatory regime, we con-
sidered both the in- or out-of-phase oscillations as the initial
conditions and then observed which of these modes re-
mained stable �or if both were stable�. The simulations
showed that if a transition between the two modes of oscil-
lation is possible, the transition might take as long as 2000
units of time. To ensure that we captured such transition
points, the simulations were run for 5000 time steps at each
value of �.

As shown in Fig. 8, closely spaced patches with �x
�1.5 oscillate in phase at all the considered values of the
applied stretch �. The out-of-phase oscillations prevail over
the in-phase mode if the patches are placed at a distance of
�x	3.5. The simulations also revealed that the longitudinal
strain could cause a transition between the in-phase and out-
of-phase modes at an interpatch distance in the intermediate
range of 1.5��x�3.5, and if the patches are located suffi-
ciently far from each other at �x	5.5 �see Fig. 8�.

It is important to note that the dominance of one or an-
other synchronization mode near the Hopf bifurcation point
can be determined through the linear stability analysis under
the proper boundary conditions. It is reasonable to assume
that symmetric �even� and antisymmetric �odd� perturbations
of the steady state will give rise to the respective in-phase
and out-of-phase oscillations. The stability of the steady state
with respect to these perturbations can be determined by ob-
taining the eigenvalues corresponding to the even and odd

eigenfunctions of Eqs. �33�–�35�. Equations �33�–�35� admit
both the even and odd eigenfunctions because the equations
contain only the second spatial derivatives and the steady
state is symmetric due to the chosen boundary conditions and
the spatial symmetry of the system �see Fig. 2�. At the origin,
the even and odd eigenfunctions have the property of ũ��0�
=0 and ũ�0�=0, respectively. Therefore, the corresponding
eigensolutions could be obtained by solving Eqs. �33�–�35�
for half of the system at x	0 with the above properties
imposed as boundary conditions at x=0.

The results of the stability analysis of the even and odd
perturbations are presented in Fig. 7 by the dashed and short-
dashed lines, respectively. As seen in Fig. 7, the solid line,
which was obtained through the stability analysis of the
whole system with no a priori assumption on the symmetry
of perturbation, coincides with the dashed line at �x�1.7,
and with the short-dashed line at �x�1.7. This observation
means that at a short interpatch distance, the steady state
loses its stability against the even or symmetric perturba-
tions, so that the in-phase oscillations should develop in the
system. In contrast, if the patches are placed sufficiently far
from each other, the odd perturbations become unstable first,
and this should result in the out-of-phase mode of oscillation.
Comparison of Figs. 7 and 8 shows that the results of the
linear stability analysis and the numerical simulations are in
agreement with respect to the mode selection in the vicinity
of the Hopf bifurcation point.

Further analysis of the data presented in Fig. 8 revealed
that the in-phase and out-of-phase oscillations exhibit differ-
ent behavior upon stretching the gel sample having two BZ
patches. This result is demonstrated in Figs. 9�a�–9�d�, which
show frequency of the synchronized oscillations as a func-
tion of the stretch � at the interpatch distance of �x=1, 2, 4,
and 6, respectively. In Fig. 9, the oscillation frequency in the
system of two patches is shown relative to the frequency
�0�0.170 in a single patch at Lp=5 and �=1.5. The solid
triangles mark the data points obtained in the course of
stretching the sample starting from the nonoscillatory state at
�=0.5. The open squares and diamonds correspond to the
data obtained during the contraction of the sample starting
from the respective symmetric �in-phase� and asymmetric
�out-of-phase� initial conditions within the oscillatory do-
main at �=2.5.

Figure 8 indicates that at �x=1, only the in-phase oscil-
lations take place in the considered range of �, and that only
the out-of-phase mode exists at �x=4. It is seen in Figs. 9�a�
and 9�c� that frequency of oscillation as a function of the
sample length is quite different for the in-phase and out-of-
phase modes. Namely, frequency of the in-phase oscillations
monotonously increases as the sample is stretched at �x=1
�Fig. 9�a��, whereas at �x=4, frequency of the out-of-phase
mode exhibits a maximum and then decreases with an in-
crease in the sample length �Fig. 9�c��. Next, Fig. 8 shows
that at �x=2 and 6, the in-phase and out-of-phase modes
coexist at sufficiently high values of �. Owing to this coex-
istence, frequency as a function of the sample length exhibits
two branches at high values of � as seen in Figs. 9�b� and
9�d�. At �x=2, the in-phase oscillations take place through-
out the whole range of � considered, whereas the out-of-
phase oscillations are found only in the elongated state under

��= 1.1 Lg = 10Lp = 5
�0= 0.139

f = 0.7

In-phase

Out-of-phase

Both

�x

�

FIG. 8. Domains of the in-phase and out-of phase modes of
synchronization in the heterogeneous gel with two patches as ob-
tained by the numerical simulations. Also shown are the upper and
lower stability boundaries of the steady state �see Fig. 6�.
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appropriate initial conditions �Fig. 9�b��. In contrast, at �x
=6, the out-of-phase mode dominates, and the in-phase os-
cillations are observed only at high stretch ratios �Fig. 9�d��.
Finally, it is worth noting that although the characteristic
features of the function ���� are determined by the mode of
oscillation �in- or out-of-phase�, the magnitude of the effect
depends on the interpatch distance �x. Namely, variations in
the frequency of oscillations upon changing � become less
prominent as the distance between patches increases �Fig. 9�.

There are two separate effects that contribute to the de-
pendence of the chemical oscillation frequency on � pre-
sented in Fig. 9. One effect is due to the changes in the
volume fraction of polymer and patch length in the course of
stretching �or compressing� the gel sample. This effect is
responsible for the variations in the frequency of oscillation
in a single BZ patch shown in Fig. 6. Another effect is spe-
cific to the gel having two BZ patches and is due to the
variations in strength of the interaction between the patches
caused by the changes in the interpatch distance in the course
of deformation. In order to extract the effect of variation in
the interpatch distance, we normalized the function ���� for
the system with two patches to the function �0��� for the
system with one patch at the same patch length. This normal-
ization procedure was applied to the ���� functions for the
in-phase and out-of-phase oscillations shown in Fig. 9. Fig-
ure 10�a� shows the result of this renormalization and indi-
cates a qualitative difference in behavior of the in-phase and
out-of-phase oscillations. First, at the same value of �, the
out-of-phase mode in the system having two patches exhibits
a higher frequency of oscillations than that in the system
having one patch. In contrast, the frequency of the in-phase
oscillations in two patches is lower than that in a single
patch. Second, the frequency of the out-of-phase oscillations
increases notably upon compression �i.e., with a decrease in
��, whereas the in-phase mode exhibits a slight increase in
the frequency of oscillation upon extension.

It is seen in Fig. 10�a� that the effect of � on the oscilla-
tion frequency is stronger if the patches are placed close to
each other, cf. the out-of-phase mode at �x=4 and 6. The

dependence of the frequency of oscillations on the interpatch
distance is further illustrated in Fig. 10�b�, which presents
the normalized frequency as a function of �x at the values of
� of 1.5 and 2.2. Figure 10�b� shows that the in-phase oscil-
lations exist only at small �x ��x�2.5 in the figure�, and
that their frequency is lower that the one in a single patch
and changes very little under variations of �x. In contrast,
the out-of-phase oscillations exist only at sufficiently high
�x �see also Fig. 8�, their frequency is greater than in the
system having one patch, and the latter difference diminishes
with an increase in the interpatch distance �Fig. 10�b��. It is
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FIG. 9. Frequency of synchronized oscilla-
tions in the heterogeneous BZ gel having two
patches as a function of sample length in the
elongated state at various interpatch distances.
�0
0.170 is the oscillation frequency in a single
patch at �=1.5.
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FIG. 10. Normalized frequency of the in-phase and out-of-phase
oscillations as a function of �a� gel stretch � and �b� interpatch
distance �x. �0 is the �-dependent oscillation frequency in a single
patch at Lp=5 shown in Fig. 6. Solid symbols: oscillatory regime.
Open symbols: oscillatory and steady states coexist.
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notable in Fig. 10�b� that the effect of �x on the frequency is
weaker in the sample with a greater elongation �cf. the out-
of-phase mode at �=1.5 and 2.2�.

As shown in Figs. 10�a� and 10�b�, the behavior of the
normalized frequency of oscillation in the system having two
patches under variations in the elongation and interpatch dis-
tance, respectively, are similar. In addition, Fig. 10 shows
that an increase in the actual distance between patches, ��x
�achieved either by changing either � or �x�, weakens the
interaction between the two patches, and the latter behavior
is reflected in the convergence of the values of � and �0 �see
Fig. 10�. In fact, the actual interpatch distance ��x could be
considered as a control parameter. To demonstrate the latter
statement, in Fig. 11 we show the normalized frequency for
all of the data points within the oscillatory domain in Fig. 8
as a function of ��x. It is seen that the frequencies corre-
sponding to the in-phase and out-of-phase oscillations form
distinct branches in the diagram. The characteristic features
of the two branches combine all of the features discussed
above concerning the two modes of oscillation. In particular,
the in-phase mode exhibits a weak dependence of the fre-
quency on the actual interpatch distance, and exists only at
sufficiently small ���x�6� or great ���x�12� interpatch
spacings. Additionally, the out-of-phase mode exists at suffi-
ciently high distances ���x�3�, and its frequency is a no-
table decreasing function of ��x. Finally, the two modes of
oscillation coexist at some interpatch distances �see Fig. 11�.

IV. CONCLUSIONS

We undertook theoretical and computational studies to de-
termine the effect of mechanical deformations on the behav-
ior of heterogeneous gels undergoing the oscillatory BZ re-
action. We considered a 1D model of the heterogeneous BZ
gel, in which the catalyst is located within specific patches.
The BZ reaction was assumed to have no effect on the swell-
ing of the gel �i.e., the gel is nonresponsive�. The system was
modeled by using a modified Oregonator model that took
into account the presence of polymer. Within this model, the
deformations were shown to affect the system’s behavior
only through the effective diffusion constant and the param-
eter � of the Oregonator model appropriate for BZ reactions

within a gel. In particular, these parameters now depend on
the deformation, parametrized by the lateral stretch �, and on
the volume fraction of polymer in the deformed sample.

We demonstrated that the steady-state solutions of the
model could be found by solving a system of nonlinear al-
gebraic equations. We applied this approach to obtain the
steady states for gels having one and two BZ patches, and
then studied the stability of the solutions through the linear
stability analysis. The stability analysis revealed that the lon-
gitudinal deformation could induce a transition between the
oscillatory and nonoscillatory states of the system. In hetero-
geneous gels with a single BZ patch, the deformation at the
transition point was found to depend on stoichiometry of the
BZ reaction �the parameter f in the Oregonator model� and
on the patch length. In a gel having two patches, the critical
deformation depended also on the interpatch distance.

The numerical simulation of the dynamics of the hetero-
geneous BZ gels revealed the existence of hysteresis in the
system at f �1. Namely, the transition between the oscilla-
tory and steady-state regimes occurs at different longitudinal
deformations depending upon whether the transition is ap-
proached from the within the oscillatory or steady-state do-
mains. The range of longitudinal strains where the two re-
gimes coexist in the gel having one patch was shown to
depend on the patch length and the parameter f . For gels
encompassing two patches, the interpatch distance was found
to affect the coexistence area.

Two modes of the BZ oscillations were observed in the
numerical simulations of the gels having two patches,
namely, the in-phase and the out-of-phase modes. The two
modes of oscillation were shown to exhibit a qualitatively
different behavior of the oscillation frequency as a function
of the actual distance, ��x. The frequency of the in-phase
oscillations is lower than that in the system with a single
patch and exhibits a weak dependence on the interpatch dis-
tance and the elongation. In contrast, the out-of-phase oscil-
lation has a higher frequency than within a single patch, and
the magnitude of the effect increases notably as the patches
become close to each other. The in-phase oscillations take
place if the patches are placed sufficiently close to each
other, whereas the out-of-phase mode dominates at a greater
interpatch distances. The linear stability analysis was dem-
onstrated to provide a correct prediction of the mode selec-
tion close to the Hopf bifurcation point. The longitudinal
deformations were shown to be capable of switching be-
tween the two modes depending upon the interpatch dis-
tance. We demonstrated that the actual distance between the
patches ��x could be considered as the control parameter.

In future studies, we will extend the above model to the
case of chemo-responsive BZ gels, and will analyze the ef-
fects of mechanical deformation on the dynamical patterns in
these systems. The ability to controllably alter the dynamic
behavior of BZ gels through mechanical deformations opens
up the possibility of using these materials to design chemo-
mechanical sensors. With the recent development of the 3D
gLSM �7�, we can now probe the extent to which such het-
erogeneous BZ gels can sense not only a tensile or compres-
sive strain over the whole sample, but also other forms of
mechanical deformations, such as a localized impact or pres-
sure. Further, we anticipate that this tractable treatment of

��x

���0 Mode
in-phase
out-of-phase

FIG. 11. Normalized frequency of the in-phase �open symbols�
and out-of-phase �solid symbols� oscillations as a function of the
actual interpatch distance ��x. Shown data points correspond to the
oscillatory regime in Fig. 8. �0 is the �-dependent oscillation fre-
quency in a single patch at Lp=5 shown in Fig. 6.
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strain-altered oxidative reactions within spatially heteroge-
neous gels will serve as a physical model to predict effects of
initial spacing, domain size, and local strain on induction of
biocatalytic reactions, such as metal-activated enzyme acti-
vation within biological hydrogels and cell membranes.
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